Data Pre-Processing Tool Manual

1. Start-up	
2. Top View	3
3. Wavelet Denoising (Discrete wavelet transform)	
3.1 Wavelet Denoising	
3.2 Wavelet Power Spectra	
4. tPCA	
5. Filter Design	

version 1.2 BRSystems,Inc. January 14, 2021

revision

date	version	changes
2019/11/14	1.0	1st edition
2020/1/9	1.1	analysis plot added in Filter Design
2021/1/14	1.2	wavelet power spectra added

1. Start-up

Double click "DPPT.exe"

Excel (Microsoft) is required for the PC, installed DPPT.

Wavelet Denoise, targetedPCA and CBSI(reference) are incorporated as the reducing tool of MA(Motion Artifact).

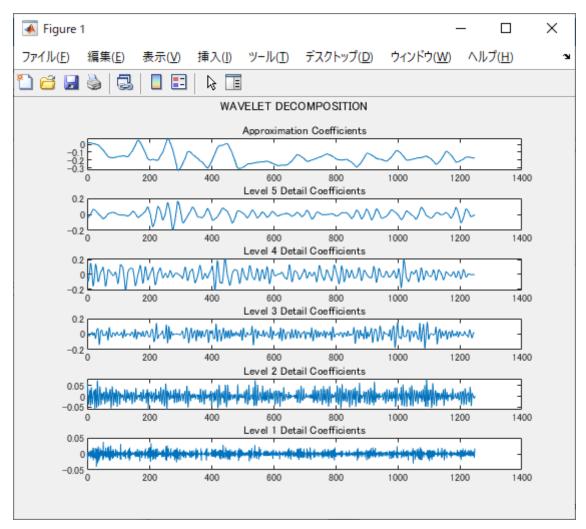
Please refer to "BRain Analyzer Guide" for technical explanation.

2. Top View

DPPT	- 🗆 🗙
Data Pre-Processing Toolbox December,2020/BRSy	ystems,Inc.
1 LOAD	
Wavelet Denoise Wavelet Power Spect targeted PCA CBSI	
Filter Design IR/butterworth FIR/equi_ripp 12.2	
Filter Fstop1 Fpass1 Fpass Fstop [Hz] stopband attenuation passband ripple stopband attenuation O Low P 0.08 0.1 1 60	3]
O High P 0.001 0.01 60 1 	
Fpass1 Fstop1 Fstop Fpass [Hz] passband stopband passband <	B]
Original Filter Filtered SAVE	
signal signal filter filter	
	EXIT

- 1 click "LOAD", select the data file (.csv).
- ② select the option to reduce the MA.

3. Wavelet Denoising (Discrete wavelet transform)

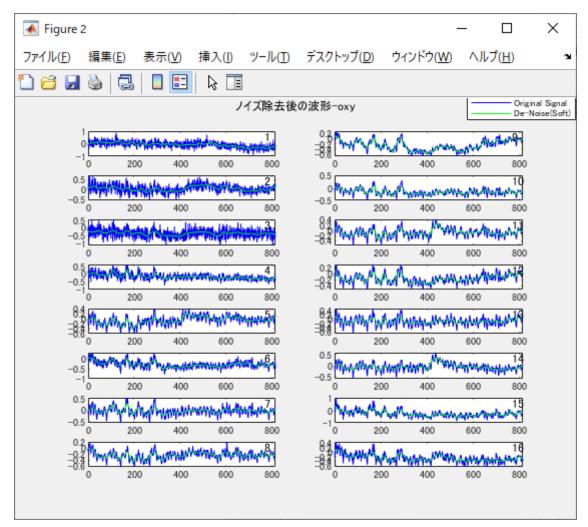

3.1 Wavelet Denoising

[configuration]

承 waveletDenoise									_		×
	-D Denoisii 1) sym4	ng 	thresho rescali 関値処理の	ng S	qtwolog	<u> </u>	coefficie ノイズ構造の ┌thresho	0選択	one	~	
wavelet	t decompos		🖲 оху	🔾 deoxy	🔘 total		I I ESHO		() hard		
channe number of levi	6 I number els	10 ~	Ø	calculte	e						
le	thi evel	reshold va 關値	ilue								
low frequency	5	3.773					(J)	(10	
8	4	3.773				levels c	omitted			onstruct	
	3	3.773		0		削除[UNIU		1600	mstruct	
	2	3.773		1	_						
high frequency	1	3.773		save							
								12		exit	

- select wavelet(db,symlet,haar)
- ② select threshold rescaling(sqtwolog,rigsure,minimaxi)
- ③ select coefficients(one,sln,mln)
- ④ select oxy-Hb, deoxy-Hb, total-Hb in the coefficients figure
- \bigcirc select thresholding, soft or hard
- 6 select channel number in the coefficients figure
- \bigcirc calculate
- (8) threshold values are calculated, you can set the values. number of levels are 5 or 3.
- (9) specify the omitted levels
- ${\scriptstyle \textcircled{10}}$ reconstruct the wavelet based on ${\scriptstyle \textcircled{9}}$
- (1) save the denoised signal
- 12 exit

[result] detail coefficients of each level (sample)

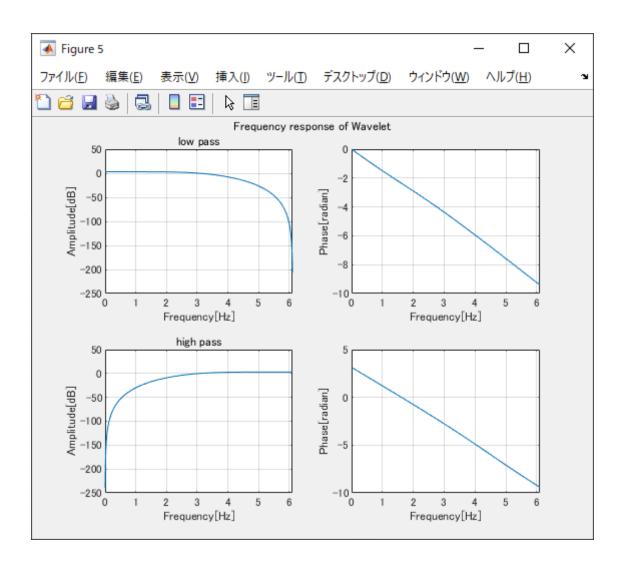

1st is high order frequency, 5th is low order frequency.

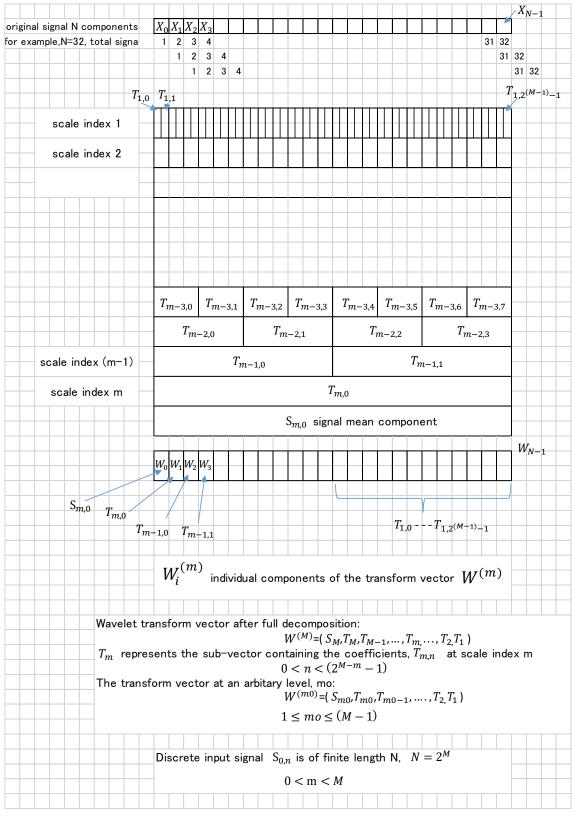
Approximation coefficients $\left(\frac{1}{\sqrt{2}}\right)c_k$ correspond to low pass filter.

Detail coefficients $\left(\frac{1}{\sqrt{2}}\right)b_k$ correspond to high pass filter.

This sample below is 16 channels.

Blue line is original wave, green line is denoised wave.

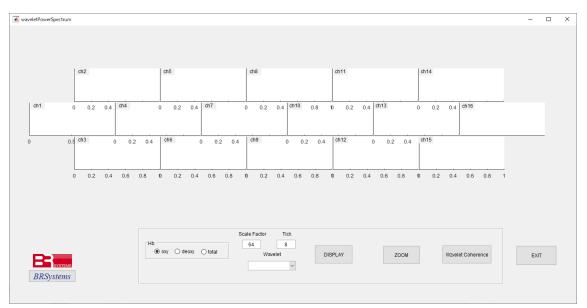

[REMARKS]

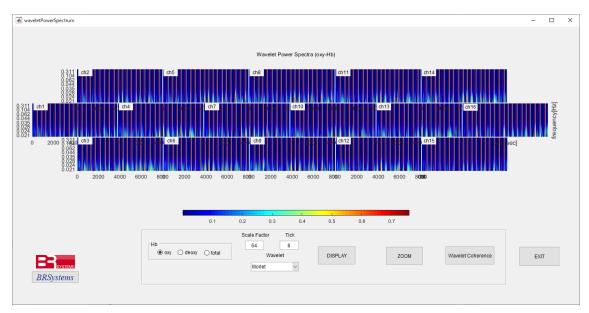

(1) When level number is set 5, wave may be too smoothed and there is a possibility to eliminate the activation of the brain. In this case, set 3.

The effect of the denoising is dependent on the value of various settings.

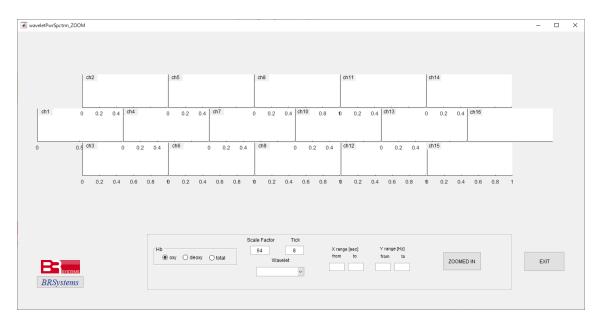
(2) There are many cases that the filtering effect of wavelet denoising and band pass(fft) is very similar.

This tool displays the frequency response of wavelet as below. sample case: symlet4, nyquist frequency 6.1[Hz]

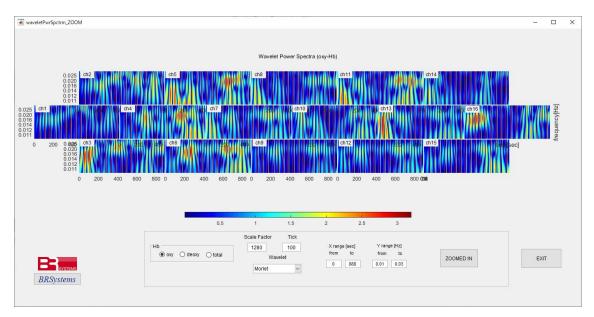



Source: "The Illustrated Wavelet Transform Handbook", Paul S Addison, Taylor & Francis

3.2 Wavelet Power Spectra


click "Wavelet Power Spectra" in Top View

- select the type of concentration (oxy,deoxy,total)
- $\boldsymbol{\cdot}$ set the scale and the tick for pseudo frequency
- $\boldsymbol{\cdot}$ event line indicated

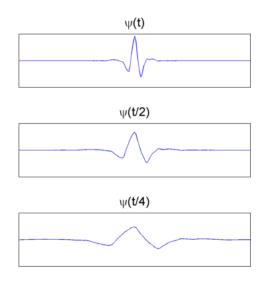


- $\boldsymbol{\cdot}$ This displays overview of the signal spatially and temporally at one glance.
- If you want to see the interested frequency and time range, click "ZOOM"

• set "Scale Factor", "Tick", "Xrange", "Yrange", and click "ZOOMED IN"

• In the case of "ScaleFactor:1280", "Tick:100", "Xrange:0-888[sec]", "Yrange:0.01-0.03[Hz]", the below spectra will be derived. You can see the overlooked brain activation.

Explanation of pseudo-frequency, Fp


Fp is calculated from Fc (center frequency), a (Scale Factor) and Fs (Sapling Frequency)

```
• Fc (center frequency)
```

```
Each wavelet function (harr,sym4,morley,etc.,) has unique Fc (center frequency).
centfrq('meyer') = 0.6902[Hz]、 centfrq('morl') = 0.8125[Hz]
centfrq('sym4') = 0.7143[Hz]
```

 $\boldsymbol{\cdot}$ a (Scale Factor)

When Scale Factor equals to 1, Fp will be compressed and becomes high frequency. When Scale Factor increases, Fp will be extended and becomes low frequency. In the figure below, denominator 1,2,4 correspond to the Scale Factor

• Fp (pseudo-frequency)

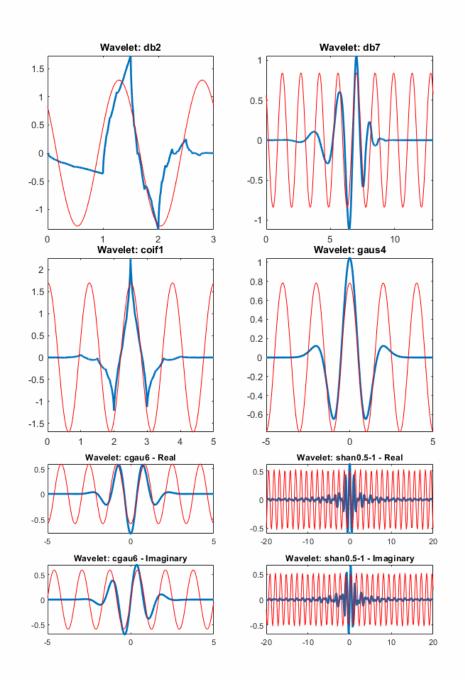
Fp is derived the next formula.

Fp = scal2frq(1:a, 'morl', 1/Fs); % this case wavelet function is 'morley'.

• Xrange[sec]: set start and end time

• Yrange[Hz]: set low and high frequency

Wavelet Function: morley Fs(Sampling Frequency): 12.2[Hz]


a:	Scale Fa	ctor	Fp: Pseudo Frequency
Tick: 8	4		2.478
8	12		0.826
	20		0.496
8	¹ 28		0.354
	36		0.275
	44		0.225
	52		0.191
	60		0.165
	:		
	128		0.0774
	:		
	640		0.0155
	:		
	1280		0.0077

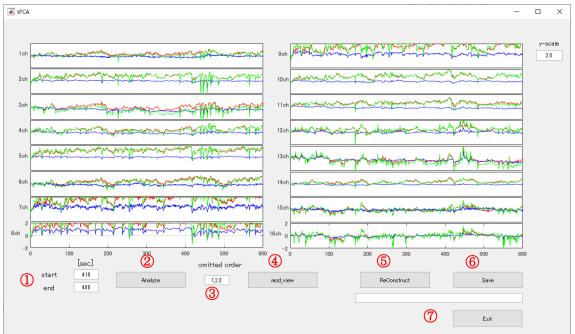
note of Yrange:

when set Scale Factor 60, and set the value of low frequency less than 0.165, error will occur.

Ref: https://mathworks.com/help/wavelet/ref/scal2frq.html

As you can see, the center frequency-based approximation (red) captures the main wavelet oscillations (blue). The center frequency is a convenient and simple characterization of the dominant frequency of the wavelet.

4. tPCA

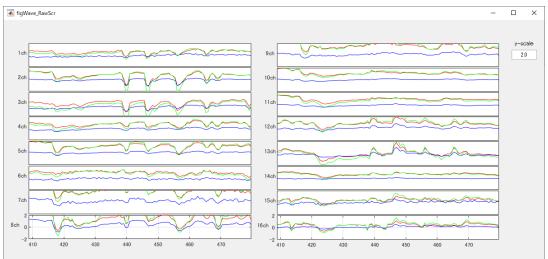

"Targeted principal component analysis: A new motion artifact correction approach for near-infrared spectroscopy", Meryem A.Yucel, et al., Journal of Innovative Optical Health Sciences, Vol.7,2014.

Measured signal consists of normal range and MA range.

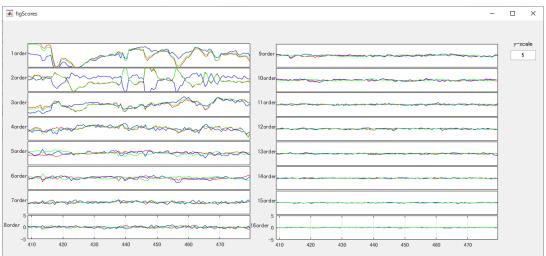
When full wave is analyzer by PCA, and delete the specific order of principal components, valuable, important range of the signal to be kept, will be also deleted as a result.

In this case, only the range of MA is extruded, PCA is applied to the range and delete the MA order.

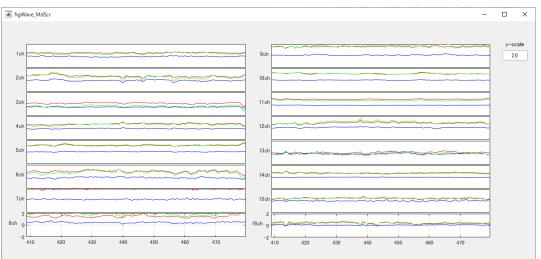
Finally modified extruded range is attached to the original signal.

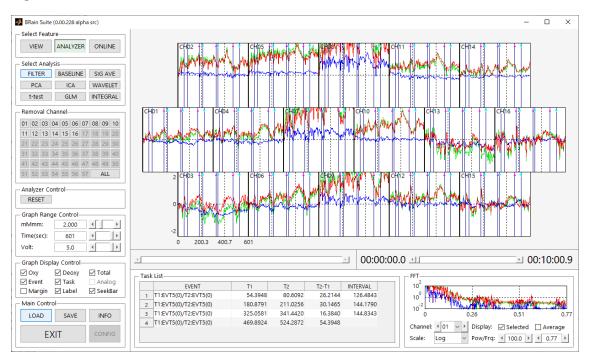

click "targeted PCA".

[configuration]


- (1) set the excluded range (this sample is $410 \sim 480[sec]$)
- ② click "analyze", then the raw wave of the excluded range(Fig.1) and the result of PCA(Fig.2) are displayed.
- ③ in this case, we delete 1,2,3 order of principal components. Set 1,2,3 in the omitted order frame.
- ④ click "mod_view", the modified wave, deleted 1,2,3 orders, will be displayed (Fig.3).
- ⑤ click "ReConstruct". the modified wave is embedded in the original wave after adjusting the both ends coordinates.
- 6 click "Save". save the reconstructed wave. The reconstructed wave is displayed in detail on "BRainAnalyzer" (Fig.4-1)
 Fig4-2 shows the original wave.
 In the modified wave(Fig.4-1), the range 410~480[sec] is smoothed.
 Fig.5-1 shows the enlarged view of the modified wave of channel 3.
 Fig.5-2 shows the enlarged view of the original wave of channel 3

 \boxdot click "Exit".





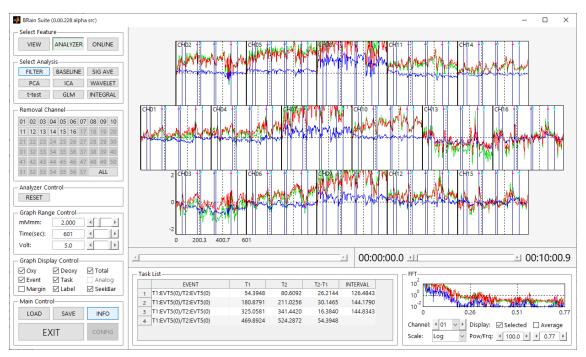


Fig.4-1 the modified wave

Fig.4-2 the original wave

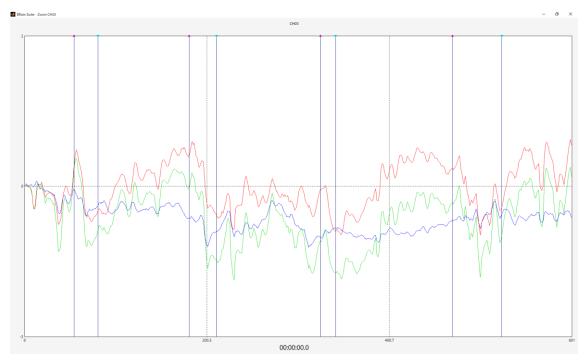
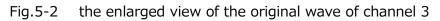
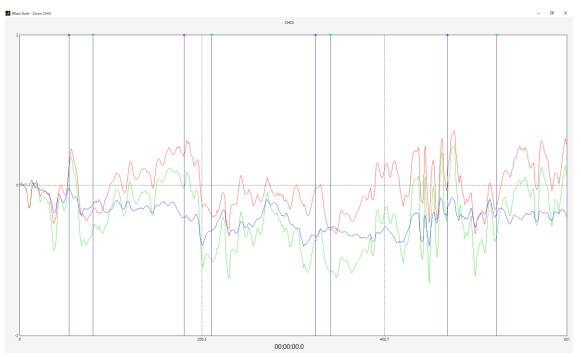
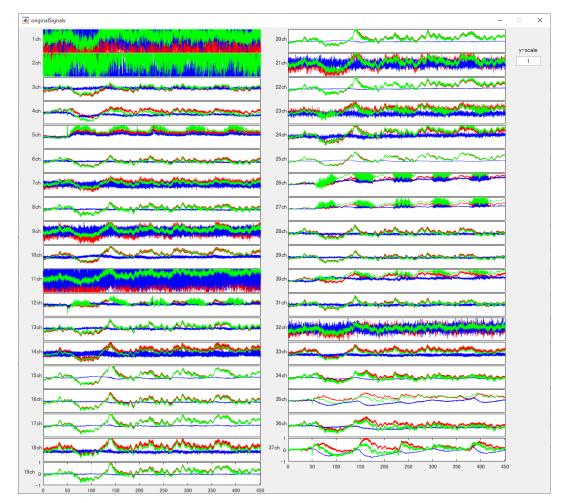




Fig.5-1 the enlarged view of the modified wave of channel 3

5. Filter Design

		essing Toolbo	January,2	020/BRSystems,J	Inc.	
LOAD						
WaveletDen	oise	targeted PCA		CBSI		
Filter Design						
) IR/butterwort FIR/equi_rippl	1.526	[Hz] frequency range	[Hz]			
Filter O Low Pass	Fstop1 Fpass1	Fpass2 Fstop2 [Hz]	stopband passb attenuation 1 rip	ole attenuation 2	[dB]	
⊖ High Pass	0.001 0.01		60 1			
Band Pass	0.005 0.01	0.2 0.205	60 1	60		
O Band Stop	Fpass1 Fstop1 0.013 0.015	Fstop2 Fpass2 [Hz] 0.017 0.019	passband stopb ripple 1 attenu 1 6	ation ripple 2	[dB]	
Chighidi		iltered 6 SAVE				
signal	filter order	fft				


[configuration]

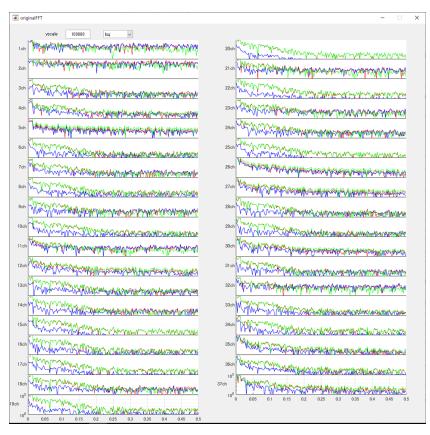
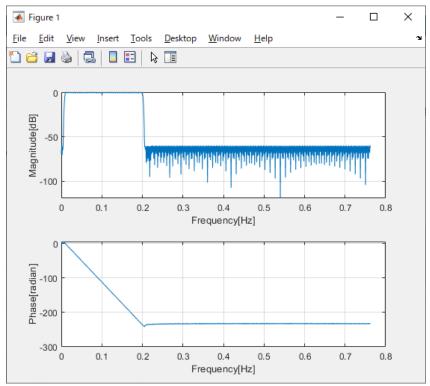
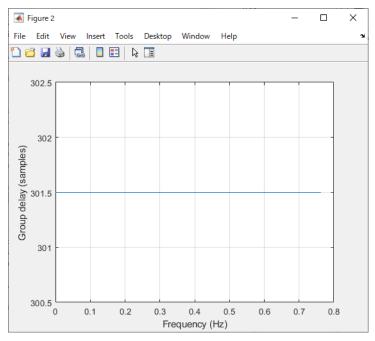
Select IIR (infinite impulse response filter) or FIR(finite impulse response filter).

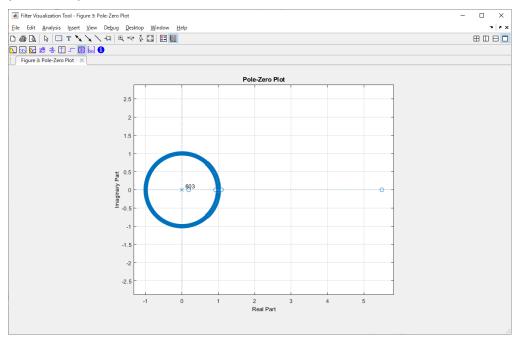
Impulse response of IIR continues indefinitely, consistent with recursive filter. Impulse response of FIR becomes zero at finite duration, consistent with non-recursive filter.

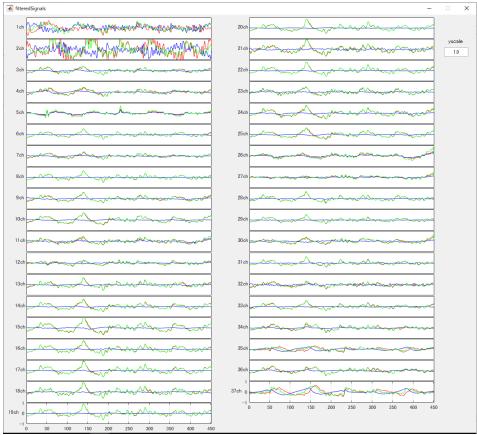
Set sampling rate [Hz] fNIRS signal, Frequency range [Hz]. Frequency range is a limit of horizontal axis (Fig.2 &5 fft).

- ② Select filter pass, and input the corresponding configuration values.
- In original panel, click "signal". Measured raw data is displayed(Fig.1).
 Click "fft", fft of raw data is displayed(Fig.2).
- Click "Filter", you can see the specification of your filter, magnitude response and phase response(Fig.3). Filter order is also calculated.
- In Filtered panel, click "signal", Filtered data is displayed(Fig.4).Click "fft", fft of filtered data is displayed(Fig.5).
- 6 Click "SAVE", save the filtered data. This data will be used for base-line process, or GLM
- ⑦ Click "EXIT"
- Our filter is considered to compensate for delay introduced by filtering.
- When excessive transient response occurred in IIR (filtfilt), we provide the option, to reduce the transient response.

Fig. 1


Fig. 3 magnitude response and phase response


group delay response

pole-zero plot

Fig. 5

year 1000 Image: Control of the second seco
220 Mail Mail And
32 22 43 12 44 12 45 12 46 12 47 12 48 12 49 12 49 12 40 12 41 12 42 12 43 12 44 12 45 12 46 12 47 12 48 12 49 12 49 12 40 12 41 12 42 12 42 12 43 12 44 12 44 12 45 12 46 12 47 12 47 12 48 12 49 12 40 12 40 12 41 12 42 12 42 12 43 12 44 12 45 12 46 12 47 12 48
330 Math Chappen (1) 331 Math Chappen (1) 332 Math Chappen (1) 333 Math Chappen (1) 334 Math Chappen (1) 335 Math Chappen (1) 336 Math Chappen (1) 337 Math Chappen (1) 338 Math Chappen (1) 339 Math Chappen (1) 330 Math Chappen (1) 331 Math Chappen (1) 332 Math Chappen (1) 333 Math Chappen (1) 334 Math Chappen (1) 335 Math Chappen (1) 336 Math Chappen (1) 337 Math Chappen (1) 338 Math Chappen (1) 339 Math Chappen (1) 330 Math Chappen (1) 331 Math Chappen (1) 332 Math Chappen (1) 333 Math Chappen (1) 334 Math Chappen (1) 335 Math Chappen (1) 336 Math Chappen (1) 337 Math Chappen (1) 338 Math Chappen (1) 339 Math Chappen (1) 330 Math Chappen (1) 331 Math Chappen (1) 332 Math Chappen (1)
43 23 23 24 <
230 230
6.9 28.9 6.9 28.9 6.9 28.9 6.9 28.9 6.9 6.9 7.9 <td< td=""></td<>
280 280 60 270 61 270 62 60 63 60 64 60 65 60 66 60 67 60 68 60 69 60 60 60 60 60 60 60 61 60 62 60 63 60 64 60 65 60 66 60 67 60 68 60 69 60 60 </td
200 200 Ministration 200 Ministratistration 200
300 200
120 Maphin Christophyse 120 Maphing Christo
110 200 POSTANDARDANA 200 POSTANDARDANANA 200 POSTANDARDANANA 200 POSTANDARDANANANANANANANANANANANANANANANANAN
220 Martine free how we have a second free free free free free free free fre
130 Michael 320 Michael Marine Marine 1
Ormana L
Had All Contraction of the second so a first
see Manual and a see a second and a second a s
1800 MAN WINT ALLAN 250 MANY MANY
no har and har
130 Manufacture 3201
0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5